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The authors examine the steady-state one-dimensional motions of
suspensions whose particles have a density equal to that of the corres~
ponding dispersion medium. As a whole, the mechanical behavior of
such suspensions is described by equations of motion that coincide in
form with the Navier-Stokes equations for a certain incompressible
fluid whose viscosity is a known function of the particle concentration
in the suspensions. To close these equations, the authors postulate 2
principle of minimum energy dissipation for steady-state motion,
which plays the part of an equation of state for the suspension. This
new equation permits the determination of the spatial distribution in
the concentration of solids. Exact solutions are presented for certain
variational problems associated with the Poiseuille flow of a fluid of
this kind in circular tubes and Couette flows between concentric cy-
linders and parallel planes. It is shown that in most cases separation
of the suspension takes place.

In [1], equations based on a model in which the phases are treated
as interpenetrating interacting continua were proposed as a means of
describing the motion of two-phase disperse systems. However, these
equations are not sufficient for a complete description of the motion,
since there is no analog of the equation of state of the disperse system
as a whole that would make it possible to determine the behavior of
the system concentration as a function of space and time.

It is easy to show, for example, that, even in the case of simple
steady-state motion in a vertical circular tube, these equations have
an arbitrary number of different solutions corresponding to various
spatial distributions of the disperse phase (any physically admissible
distwribution has its own particular solution). Generally speaking, toelim-
inate this shortcoming of the theory and close the system of equations
it is necessary to consider an additional equation of the quasidif-
fusional type. This equation must describe the variation of particle
concentration in the system, with allowance for the dependence of
the diffusion processes on the phase velocity gradients, the stresses
in the flow, etc. It should evidently be some generalization of the
Langevin or Fokker-Planck equations, Obviously, its formulation and
the evaluation of the kinetic coefficients are very serious independent
problems, whose solution involves almost insuperable difficulties.
However, if we confine ourselves exclusively to steady-state motion,
then by analogy with the known results of the thermodynamics of
irreversible processes, we can introduce the heuristic principle that
the disperse-phase concentration distribution in the flow is established
in such a way that the dissipation of flow energy is at a minimum.
This principle of minimum dissipation corresponds to the principle of
maximum entropy increase from the thermodynamics of irreversible
processes, although the latter has also not been rigorously proved for
nonequilibrium mechanical systems,

It may be assumed that in a two-phase flow there are certain
small random motions and associated forces caused, for example, by
the wakes formed behind moving particles, by the interaction of the
particles as well as by every conceivable fluctuation or perturbation
of the phase velocities, disperse-phase concentration, and pressure.
Under the action of such forces, the individual particles move into
certain "equilibrium™ positions corresponding to a given steady-state
motion (and satisfying the formulated principle). The random force
field and the process of establishment of the stationary motion may
evidently be described and the principle of minimum energy dissipa-
tion justified only within the framework of the corresponding statisti-
cal theory. We note, however, that the existence of fluctuating forces
and regions of true steady-state motion was experimentally demon-~
strated. (For example, in [2] the motion of individual particles in a
viscous fluid was investigated). Without a detailed examination of

148

the statistics of the above-mentioned forces, it is also impossible to
determine the limits of applicability of the theory developed below.
However, from general considerations it follows that at very low veloci-
ties these forces are very small, so that the steady-state regime may
not be achieved in time for it to play an important part. On the other
hand, at high velocities the random forces due to the fluctuations may
be very intense so that the true distribution of the solid phase in the
flow will vary considerably from the theoretical distribution correspond-
ing to minimum energy dissipation.

For simplicity, we will examine the steady-state motion of sus-
pensions of solid particles, whose density is equal to the density of the
viscous medium. In this case, it is possible, with sufficient accuracy,
to assume that the local values of the phase velocities coincide every-
where except for thin layers at the confining walls. Passing from the
equations of [1] to the equivalent equations of two-fluid hydrodynamies
of a disperse system [3], we demonstrate that the equations of motion
for the suspension as a whole coincide with the Navier-Stokes equa-
tions for a viscous fluid with a viscosity which is a known function of
the particle concentration at the walls (3], Near the walls, the local
values of the particle and fluid-~phase valocities may not coincide and,
moreover, the usual no-slip condition may not be satisfied, However,
if the radius R of the tube is much greater than the radius a of the parti-
cles it can be shown that, within a/R, the boundary condition of no
slip at the walls is satisfied. We also note that because of the practice
of averaging over volumes whose linear dimensions considerably ex -
ceed a, all the results obtained below relate to the dimensions I > a.

§1. General formation of the problem of motion of
suspensions. As usual, we can supplement the system
of Navier-Stokes equations with the continuity equa-
tion of the fluid and the condition of conservation of the
particle flow. Thus, we obtain the closed system in
which

op @ \(aui | 6ujj )
'a—gﬁi‘—@j‘[ﬂ(?/ o T A —dygdi;

du; . 3 (pu) . 7. .
9z =03 o *«0, ui]I‘—Ul,
. o1 1 Buy duj\ 7 Ouy , Ouj
= — 3 Lo ! et 7
min D = min ~; é u (e} \7w; 69& (a$j + axi>dt L (1D

Here, d is the density and u(p) is the viscosity of
the fluid; p is the volume concentration of solids and
U; is the velocity of the solid surface T.

The effective viscosity u(p) is, generally speaking,
a concave function of p. For simplicity, we assume
that as p — ps« , where p« is the concentration corres-
ponding to dense packing of the particles, the quantity
u{p) tends to infinity; as p — 0 we have p — pg, where
(g is the viscosity of the homogeneous disperse medi-
um. It is convenient to pass from p to the normalized
concentration p' using the definition p = p'px. Hence-
forth p will be understood to represent the normalized
concentration p'. We note that it satisfies the natural
inequalities

0<Cp<<t. (1.2)



In the specific calculations that follow we use an
approximate relation for 1 (p) satisfying the limiting
conditions formulated above:

pp) = po(l — )™ (r>1). (1.3)

The variational problem (1.1)—(1.2) is a very com-
plicated variant of a problem in optimum-control
theory. Accordingly, in a number of cases it is pos-
sible to employ methods characteristic of that theory,
i.e., either use the maximization principle {4] or re-
duce it to the functional equations of dynamic pro-
gramming to obtain a numerical solution of the prob-
lem [5]. However, the maximization principle is in-
effective in solving the problems considered in this
paper, so it is preferable to make a qualitative in-
vestigation of the corresponding functionals in com-~
bination with the method of extremals.

§2. Flow in a circular tube. We will consider the
axissymmetric steady-state flow of a suspension in an
infinite circular tube of radius R. Equations (1.1) and
the integrated conditions of conservation of the sus-
pension (or fictitious fluid) and particle flows have the
form

1 d du dp .
TET(rM(p)W):H:"P’

: \ rp(ryu(rydr. (2.1)
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Here, U and U _ are the mean flow velocities of the
suspension and the particles, respectively. The ex-
pression for the energy dissipated per unit length of
tube takes the form

R
D:ngru(p)<%)2dr-

We introduce new dimensionless variables and the
mean concentration over the section (p):
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Integrating the first of Eqgs. (2.1) with allowance
for the no-slip condition, substituting the results into
the expressions for U, U,, D and (p), and using ex-
pression (1.3) for u(p), we obtain
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The velocity distribution over the cross section of
the tube is described by the expression

1
u(z) = %5(1 —y)de. (2.4)

Thus, to determine p (x) it is necessary to solve a
certain variational problem with the imposed isoperi-
metric condition and constraint (1.2). We will seek the
solution p (x) in the class of piecewise continuous func-
tions p(x) = y'(x) =€’ (0,1) , assuming, to be specific,
that at the points of discontinuity p = y' is continuous
on the left.

The motion of the suspension depends to a great
extent on the nature of the given external conditions.
For different external conditions and hence for dif-
ferent practical realizations of the motion the specific
formulations of the variational problem will also be
different. Below we consider three simple problems
of the motion of a suspension:

1) flow defined by specifying the pressure gradient
P and mean particle concentration {p};

2) flow defined by specifying {p) and the flow rate
of the suspension U;

3) flow at specified suspension and particle flow
rates, Uand U,.

All these problems can be realized, for example,
by carrying out a corresponding experiment with a
long capillary viscometer. Other types of flow, for
example flow with given P and Up, are also possible.

For given {p) and P, minimum D(y) corresponds
to a minimization of the functional J{y). For a flow
with given (p) and U, from (2.3) we have

P = du, URZI()I, D = gy L)1,

Hence it follows that in the latter case min D(y)
corresponds to max J(y) if L{y) = {p). Accordingly,
it is convenient to examine the first two variational
problems together.

§8. Solution of variational problems corresponding
to a given mean particle concentration. We introduce
the new variable z =1 — y' = 1 - p. It is easy to see
that 0 = z = 1. The problems can then be formulated
as follows: to find in the class of functions z' € C'(0, 1)
functions that minimize and maximize the functional

1
Jo(z) = \zz"dz (n>1), 8.1)
8

with the condition
1

Lo (3) = Bde =2 (<< (3.2)

0

and the restraint
0zt - (3.3

The principal difficulty is that the unknown ex-
tremals do not, generally speaking, satisfy the Euler
equation, which involves the possibility of an arbitrary
number of discontinuities of the extremals on [0, 1]
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Also, the possibility that the extremals will reach the
boundaries z = 0 or z = 1 of the permissible region
of variation for z(x) must be anticipated. The funda-
mental fact that follows from a qualitative examina-
tion of the functionals is the monotonicity of the ex-
tremals. The proof is based on a lemma.

Lemma 3.1. On any interval A of nonzero measure
(A =(0, 1)) on which it is continuous, the minimum
(maximum) z,= €’ (0,1) representing the solution of
variational problem (3.1)~(3.3) does not increase (de-
crease).

Proof, We assume the opposite, namely, that on the interval of
continuity A(xy, Xp) where (0 = X; < x5 =1) the minimum zy(x) does
not decrease, We construct the function

5 (x)_{zn(wl—sz—‘x), rEA
T g () , zEA

representing the reflection of zy(x) on the interval A about the straight
line x = (X; +X)/2. The function za (x) satisfies constraint (3.3) and
also condition (3,2), since the areas under the zg and z. curves are the
same, By virtue of the convolution property,
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The latter conditional inequality follows from the fact that z(x)
is nondecreasing on 4, the equality being realized only at z, ()=
= const (z & A). We note that it occurs for arbitrary n > 0 in (1.8},
The proof for the maximum, which by contradiction is assumed to be
nonincreasing, is analogous. The contradiction obtained also proves
the lemma.

To prove the monotonicity of the extremals on the
interval [0, 1], it is necessary to show that the min-
imum (maximum) cannot increase (decrease) abruptly.
A discortinuity of the piecewise-monotonic function
z(z)e= €’ is regular if it preserves the monotonicity
of z(x); otherwise it will be called irregular. We have
the following theorem.

Theorem 3.1. The minimum (maximum) for the
problem (3.1)—(3.3) does not increase (decrease) on
the interval [0, 1].

Proof. We will prove this theorem for the minimumj; the proof for
the maximum is analogous, Assuming the opposite, namely, that the
minimum zy(x) has N irregular discontinuities at points 0 < x4 <...

. < xy-; and examining zg on [0, X1, we let 2~ = zy(x, —0), zot =
= z¢(xp + 0): where, by assumption zg > z, . We also denote zy(x)
on the left of x, by ¢,(x) and, on the right of z; (i.e., on the interval
(xg,%1)) by 95(x) and isolate in the neighborhood of x¢ a small interval
A(xa.xB) & [0,x,]such that ¢;(xg) = ¢y(xg). The interval A exists
in view of the piecewise continuity and piecewise monotonicity (Lemma
3.1) of zy(x). On the interval A(xy:Xg) We construct the new function
ze(x) {represented by the line C'D'A'B") from the function z, (repre-
sented by the line ABCD (Fig. 1)). For this purpose we move the piece
CD horizontally to the left, parallel to itself until the point C coin-
cides with C' with abscissa X piece AB is similarly shifted to the
right until the point B coincides with B' with abscissa xg. Conditions
(3.2) and (8.3) are invariant under these parallel wanslations. The
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analytical representation of z#(x) has the form

i 20 (), xé A (%4, xﬁ)
z*(x): qu(x_xg_“}_xg)v xu<x<xm+xﬁ"‘x0
P12 — g+ ), Ty + 25— Ty ¥ xg

After a simple calculation, we obtain

%o *3
Jotz) —Jo ) = (55 — =) | @ @) dr — (@, ) | @ @) da-

In the second integral we introduce the change of variables

Ty — 1,
= af 4 b, a:xo—_g , b==z,—az, .

which wansforms the segment (s XB) into the segment (x,xp). Then
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Since. from the construction of the interval A we have ¢; < 9,,
we may therefore obtain .

Totea) = o o) = (@5 — 5 | 10" (2) — 0" (03 4 D)) dw <0 -
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If xq = 0 and Xg =% (i.e., 2¢(0) = z((x,)), the minimum cannot
have an irregular discontinuity at the point x,.

We will now consider the general case. Without loss of generality
it is sufficient to consider the situation characterized by the inequal-
ities
2 (0) > > 507 > 2 (20) - 5.4

In fact, let, for example, zy(0) < zo+ and zg(x;) < z;". Then the
function z# (x), represented by the dashed line C'E'B'ED in Fig. 2a,
will give a smaller value for the functional Jy(z) than zy(x), represen-
ted by the dashed line ABCED conditions (3.2) and (3.3) must be in-
variant under the transition from z, to z, ). It is easy to see that for
Zw{(x), which alone need be considered, inequalities (3.4) do, in fact,
hold. The argument is quite analogous for the case in which

20~ < 20 (21)s 20 (0) > 20"

Thus, let zy(x), satisfying (34), have the form shown in Fig. 2b.
We draw the straight line z = 2% = '(zo““ +2¢7)/ 2 parallel to the axis
of abscissas until it intersects the curves z = ¢(x) and z = ¢4(x) at
points A and D, respectively (Fig. 2b), with abscissas X, and xg, The
function zy(x) , which coincides with zg{x) everywhere outside the in-
terval A(x o, xg) and on A is represented by the dashed line AC'B'D,
gives a lesser value of the functional Jy(z) than zy(x). We note that
the constructed function z,(x) has two irregular discontinuities at the
points x and xg on [0,x], the value of these discontinuities being
equal to half the original discontinuity., Going through a similar pro-
cedure with the irregular discontinuities of the function z,(x), we ob-
tain a function z£x} giving a lesser value of the functional with sat-
isfaction of conditions (3.2)and (3.3). zy(x) has four irregular discon-
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tinuities, each of which is equal to one-fourth of the original discon-
tinuity of the function zy(x). The abscissas of these discontinuities
never coincide. It is easy to see, by induction, that the k-th function
2y (x) has ok irregular discontinuities of magnitude 2‘}((2{r - zg )
Continuing the process indefinitely, we obtain a function z,(x) having
no discontinuities on the interval [0,x,] at which z,(x) increases and
giving functional (3,1} a smaller value than zy(x) would give it. Re-
peating the proof for the interval [0,x,], we find that on this interval
also the minimum cannot have irregular discontinuities. Continuing
the argument by induction, we arrive at the same conclusion for the
entire interval {0,1]. This proves the theorem,

We note that in the proof only the fact thatn > 0
was essential. This corresponds to an increase in the
fluidity of the suspension with increase in z. Instead
of the fluidity z™ in (3.1), which follows from expres-
sion (1.3) for the effective viscosity, an arbitrary in-
creasing function #(z), such that ¥(0) = 0, might have
figured in the proof.

A priori, two situations are possible: either the
minimum (maximum)is confined to the boundary of
the region taking the values zero or unity, or on a
certain interval it enters the open region 0 < z < 1.
In the first case it can have only one discontinuity; in
the second case, on the interval where 0 <z < 1 it
is described by the Euler equation. The Euler equa-
tion for functional (3.1) with condition (3.2) is

nxz™ ! = A; — (_xx_n\}l/(n—l); Zo = % . (35)
1t follows from (3.5) that an extremal of the indi-
cated type exists only at n # 1, while, as may easily
be shown, forn> 1 function (3.5) gives functional (8.1) a
local minimum and for n < 1 a local maximum. We
will prove Lemma 3.2.

Lemma 3.2, If there exists an interval A(xy, x;) on
which the extremal satisfies the condition ¢ <z, < 1,
then on this interval z,(x) is continuous.

Proof. It is sufficient to consider only such A on which a single
discontinuity of the extremal z,{x) exists. In view of the additivity of
functionals (3.1) and (3.2), zy(x) is a solution of the isoperimetric
problem of the exwemum of Jo(zg, A):

%3 %,
Jo (%0, A):S xzo " di, 5 2 do == <50y (A) »
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Introducing the new variable z; =w' = dw/dx and considering as
usual the functional
322
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we find the extremal w (x) must satisfy the Euler equation

(3.6)

F, =nz@)" ! —k&=4 = const,

and the Weierstrass-Erdmann conditions ar the point of discontinuity
cE A
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From {8.8) and (3.7) it follows that
[F 90 = ne (116 (e 5 0] ™ — [’ (o — 0)]" P} =0

Hence there follows the continuity of w* =z on A,

From the proved Lemma 3.2 it follows that on [0,1]
the extermal zg(x) can have not more than two discon-
tinuties at the points x*) and x® | the inequalities
z(xV—0) = 1 and ZO(X(Z) +0) =0, being satisfied for the
minimum and the inequalities z,(x(V=0) =0, zo(x? 4
0) =1 for the maximum. We now have Theorem 3.2.

Theorem 3.2. If n in (3.1) is greater than unity,
the minimum z,(x) of the variational problem is unique
and continuous and can be represented by the expres-
sions

1 , e

zo{(x) = {( (3.8)

=
)t Y, <E L

where x¢ is the unique root of the transcendental
equation

n—1 -1 Ty
n—2 0 A_n__y" (3.9)

(z) =

while the maximum z'(x) is unique and given by the
expressions

- ;0, It —<2)

29 (x
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{3.10)

Proof. As before, we proceed by contradiction. In accordance witl
Lemma 3.2, it is possible, without loss of generality, to assume that
the minimum is represented by the dashed line ABCDEF in Fig. 3, the
segments AB and EF lying in e-neighborhoods of the straight lines z =
=1 and z = 0, respectively, while the curve CD is given by Eq. (3.5).
We construct a new function such that conditions (3.2) and (3.3) do not
change and such that this function coincides with the previous function
atx < xg and x > x, (dashed line AB’D'EF in Fig. 8), Using Lemma
3.2 and Eq. (3.5), it is easy to see that the curve B'D® js unique and
also belongs to the class of (3,5), the role of xq in (3,5) being played
by the quantity Xq,xg < X;. A direct calculation shows that AB'D'EF
gives functional (3.1) a value smaller than does ABCDEF, Letting ¢
tend to zero, we obtain proof of the continuity of the minimum on
the left-hand side. We then construct the function AB"F', which co-
incides with AB'D'EF in the region x < xg and does not affect the con-
ditions (3.2) and (3.3). In the region x > x, this function also belongs
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to the class of (8.5), since there is always a corresponding value of x,,.
Direct calculations show that it gives functional (3.1) a smaller value
than AB'D'EF. Consequently, the minimum z(x) is also continuous on
the right-hand side and can be represented by expressions {3.8).

The quantity x; in (3.8) is found from the isoperimetric condition
(3.2), which leads to Eq. (3.9), The right-hand side f(xg) of this equa-
tion increases monotonically on the interval [0, 1] from zero to unity,
since

/(@) = (@ "D — ) (n— 27 >0, 0> 1.

Hence it follows that if the condition 0 <<z>< 1 is satisfied there
will always exist a unique root of Eq. (3.9), whence follows the
uniqueness of the minimum forn > 1,

When n > 1, the second assertion of the theorem is obvious. In
fact, if it is assumed that there is a certain interval A(x,,x,) on which
the maximum 2z’ satisfies the inequality 0 < z < 1, on a certain inner
segment of that interval (where 2" is continuous, and such a segment
always exists since 20 & €'), the maximum must satisfy the Euler
equation (3, 5). However, for n > 1 the latter only has solutions cor-
responding to 2 minimum of functional (8.1). Hence it follows that
z"(x) can only take values of zero or unity. Then, by Thecrem 3.1
the maximum can be represented in the form of (3.10). This proves
the theorem.

When 0 < n < 1 it can be shown in exactly the same
way that the unique minimum can be represented in
the form

2 (QC)““ 1, 0Kl —X2>
0 ﬁ{o, 1= <ot

while the unique maximum is given by the expressions

[T M —n
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We now note that all the qualitative results (and
the quantitative results relating to discontinuous dis-
tributions) correspond to an arbitrary fluidity function
¥(z), increasing with z(¥(0) = 0),that can be substi-
tuted for z in (3.1). Here, the case n > 1 corresponds
to concave functions ¥(z), and the case n <1 to con-
vex ¥(z), It is easy to prove the possibility of gen-
eralizations of this kind by examining the proofs of
the theorems.

On the basis of the results obtained, the qualitative
form of the particle concentration distributions in the
suspension p(x) may be represented by the curves in
Fig. 4 (a and b are the minima; ¢ and d are the max-
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ima); the arrows indicate the direction of displacement
of the curves with increase in (p). Experiments in-
dicate that the actual u(p) are concave functions;
accordingly, in actual cases we have qualitative dis-
tributions corresponding ton > 1 in Fig. 4.

We also note that, as indicated in §1, the results cannot be valid
at distances from the wall on the order of the particle size, since
lubricating layers that repel the particles develop at the walls, Sim-
ilarly, the analytically obtained discontinuities of the distributions
p(x) actually correspond to a sharp change in p(x) at distances on the
order of a. Hence it follows that the actual distributions differ some-
what from those obtained above (see dashed lines in Fig., 4). With the
formulas of §2, from the known functions p(x) it is easy to obtain ex-
pressions for the integral characteristics of motion of the suspension and
the velocity field for the flow, These formulas have been omitted for
lack of space.

§4. Solution of the problem corresponding to given
flow rates of the particles and the suapension as a
whole. By eliminating the unknown pressure gradient
P from (2.3), we arrive at the problem of finding the
Yo Cy that maximizes the functional

1

J(y)=\z (1 —y")"da, y(0)=0 (4.1)

with the isoperimetric condition

1
G(y)— K (y) = S(y— Kz)(4 —yYdz =0,

0

UP
K=_2<1 (4.2)
and the constraint
0y (2 << 1. (4.3)

It is easy to see that the maximum y,(x), repre-
senting the solution of problem (4.1)~(4.3), monoton-
ically increases (does not decrease) and is located in
a triangle bounded by the axis of abscissas (y = 0),
the bisector of the first quadrant and the straight line
x = 1. It is clear from (4.2) that the maximum yg(x)
simultaneously maximizes the functional G(y) if the
isoperimetric condition (4.2) is satisfied.

Let there exist 2 maximum yy. Then, there also
exists

maxyo (@) =1 (1) =<pd  (O<<p<1) (4.4)

We will consider the following auxiliary problems.

Problem 1. To find max J(y) in the class with con-
dition (4.4), constraint (4.3), and the condition y{0) =0.

Problem 2. To find max G(Y) in the class y €Cy'
with the same conditions and constraint.

Problem 1 was solved in the previous section; in
the notation of this section, its solution has the form

S EA S AN
n@=1{g) i< (4.5)
It is found that the solution of problem 2 coincides
with y;(x) from (4.5). In exactly the same way as in
§3, it is proved that for n > 1 (or generally for a con-



cave viscosity characteristic) the solution of the Euler
equation gives the functional G(y) a local minimum
under the above-mentioned conditions. Hence it im-
mediately follows that the unknown maximum y,;(x) of
problem 2 has a derivative equal either to zero or to
unity, i.e., always moves along the boundary of re-
gion (4.3). It can be represented by the dashed line
shown in Fig. 5. It is easy to see that of all such
dashed lines the curve (4.5) (the dashed line OA'F in
Fig. 5) gives the greatest value of the functional G(y).
This follows from the fact that only the "plateau" re-
gions, where y' = 0, contribute to Gly), which is
simply equal to the sum of the areas under these re-
gions (Fig. 5).

From this there follows a corollary: for given<p>,

the minimum dissipation principle, when U is also
given, is equivalent to the principle of maximum par-
ticle flow rate, when P is given. To prove this as-
sertion it is sufficient to consider (2.3).

The value of {p) in (4.5) is found from condition
(4.2):

oy = K(@2 — K)1 (4.6)

We note that if a suspension with given U and U, is
supplied to the tube inlet, K may be regarded as the
mean inlet concentration. Then, in accordance with
(4.6), in the region of steady-state flow, the mean
concentration {p) may differ substantially from K,
this difference being especially noticeable at small K.

We also note that if isoperimetric condition (4.2), which deter-
mines the relation between the particle flow and the flow of the sus-
pension as a whole, and the pressure gradient P are given, the prin-
ciple of minimum energy dissipation leads to the conclusion that there
is no flow in the tube. Physically, this can easily be understood by
considering a special experiment in which a suspension with given
mean concentration K is admitted to a cylinder bounded by a piston
under constant pressure. The piston forces the suspension into a ca-
pillary of much smaller diameter. A certain time after the process
begins the particles in the capillary enter the densely packed state,
after which motion ceases, and new suspension entering the cylinder
only serves to raise the piston.

§5. Couette flow. We will consider Couette flow
between concentric cylinders of radii Ry and Ry(R;y <
< Ry). The system of equations corresponding to (2.1)
then has the form

v, 2 7 dp 2p
¢ _ 4P, e -
d r dr? dr ' r 03
dfe T
Pro = K (p) I (”,.3) H D =2a S TPrgY redr
' Ry
'
2 7
4
3 —— £l
[/
4/ B
q 'y
g !
Fig. b

Introducing the dimensionless variable x = (r/R,)?
and using Eq. (1.3) in the integration, we obtain a
system of functionals characterizing the motion:

1
IR / : 2R.2 3
D:M\szfg:ﬂﬁ;ﬂ(@, = (1_?}) .
Bo ) £ o \Rg/ *
i
R ; d R
v :——ZT"SZ”L‘f: 2 M (2), z=1—p;
o z o !
¢
1 : 1
7 —_— ” [ —
(2> “1_k\z,dx—1_kl;(z)
* (5.1)

Here, 7¢ is the stress at the outer cylinder, D is
the dissipated energy, and V is the linear velocity at
the outer cylinder. The velocity of the inner cylinder
is assumed to be equal to zero, which, as may easily
be seen, does not restrict the generality of the anal~
ysis. Thus, for example, if the inner cylinder rotaies
and the outer cylinder is stationary, the second func-
tional in (5.1) does not change, while the first and
third are generally constant. As in §3, we arrive at a
variational problem.

In the class z € C' to find the function zy(x) that
minimizes (maximizes) the functional

) v .
M(z) = Sz"_A

&
k

~s

(5.2)

W

with the condition

1
N(z) = ﬁ SZdz =<z) (0 <) (5.3)

K
and the constraint
0z 1. {5.4)

We note that the problem of min M(z) corresponds
to determination of the concentration field when the
mean concentration in the suspension and the stress
at the outer cylinder are given. The problem of max
M(z) corresponds to determination of the concentra-
tion field when the mean concentration of the sus-
pension and the velocity at the outer cylinder are
given,

As in §3, the behavior of the extremals is deter-
mined from a qualitative investigation of the varia-
tional problem (5.2)~(5.4) using the Euler equation.
The qualitative behavior of the extremals is defined
by two assertions analogous to Lemma 3.1 and Theorem
3.1.

Lemma 5.1. The function z,= C'(k, 1) minimizing
(maximizing) functional (5.2) with condition (5.3) and
constraint (5.4) does not decrease (increase) on any
interval of continuity A of nonzero measure.

Theorem 5.1. The function z,&=C’(k, 1) that min-
imizes (maximizes) functional (5.2) with condition
(6.3) and constraint (5.4) does not decrease (increase)
on the entire interval ik, 1].

These assertions are proved by the same methods
as employed in proving Lemma 3.1 and Theorem 3.1,
The "somewhat inverted nature" of these assertions
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as compared with the assertions of §3 is attributable
to the difference between the optimized functionals
J(z) and M(z).

Then, in the same way as in §3, it is shown that,
on its intervals of continuity, the minimum is de-
scribed by the corresponding Euler equation, whose
solution can have corner points only at the boundaries
z = 0 and z = 1 of the region of variation of z;. The
maximum, however, can only take the values z = 0
or z = 1. Since the maximum is monotonic (nonin-
creasing), it has the form

1, k<z< _ )
W@= [ iSiSh e=kta-R@). (5.5)

Here, the constant « is found from the isoperi-
metric condition.

The family of intervals of the minima satisfying
the Euler equation is represented by the expressions

(€>0),
n>1).

2q (z) = Ca2/(n=1)

(e _D0—B @t (5.8)

[1— k(71+1)/(ﬂ—1)] (n—1)

From (5.6) it is easy to see that for 1 < n < 3 the
function zy(x) is concave, and for n > 3 it is convex.
The problem of the minimum falling on the boundary
z = 1is solved by investigating the behavior of z(1) =
= C({(z), k, n), where

nt1 . o p l—k
=8> O, k,n)~<a>51_kﬁ .
For fixed {z), 8 we have
dC ac

Cliy =<2B;  Cloy =<2 g <03 gp|_, =067

The behavior of C({z), k, 8) as a function of k is
presented in Fig. 6. If (z)8 > 1, there exists a kg
such that for k < kywe have C > 1. I (z)pg=1, C<
< 1 for all possible k. In the first case, with k <k
(sufficiently wide gaps) at a certain x = x; the mini-
mum reaches the boundary z = 1 and then travels
along the boundary, while for k > ky the minimum
does not reach the boundary. Thus, the behavior of
the minima (i.e., the solutions of the problem for
given 7y and {p)) and the maxima (solutions for given
V and {p ) is analogous to the behavior of the curves
in Fig. 7a,b, respectively. When the gaps are very
narrow (k — 1), it follows from (5.7) that, for given
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7o and (p), the suspension concentration distribution
tends to become uniform.

The flow and concentration distribution in plane
Couette flow are easily obtained from (5.5) and (5.6)
by passing to the limit ags Ry = « with Ry — R; = h =
= const and r — Ry =y = const. For the minimum,
from (5.6) we have

z,(y) = lim zo(z) = <z), By > o0, r — R, = const.(5.8)
For the maximum, from (5.5}, we obtain

23 (y) = lim 2, (7) = {1’ OSYSE B oo, r — By = consta(5.9)

0, <y <<yt

It should be noted that a direct investigation of the maximum in
plane Couette flow shows that there is a continuum of functions
{7 ()Y € L (0, 1) that maximize the corresponding functional under
conditions of the type of {5.3) and {5.4). These functions are repre-
sented by the expressions

0, y&EE, mes E=1—<2)

(5.10)
1, yE [0, 1]/ E=E, mes E = {2}

2 (y) = {

The proof follows from the fact that the maximum z & ¢’ can
take values of zero or unity (this follows from an investigation of the
Euler equation for the given problem) and also from the invariance of
functional (5.2) for k = 0 with respect to translation.

Then, since z, & L is the limit in the mean of the step functions

2z, & €’ having values of either zero or unity while there is no ana-
log of Lemma 5,1 and Theorem &.1 for plane Couette flow, we ob-
tain the proof of Eq. (5.10).

§6, Discussion, The results obtained show that, rheologically, a
suspension cannot be treated as an ordinary fluid. In particular, it
does not possess such a unique structural constant as viscosity, since,
as shown above, different viscometric experiments may lead to rather
different viscosity relations, This observation (noninvariance of the
rheological curves with respect to the type of viscometric experiment)
has been repeatedly noted in the literature. The separation effect is
also important in suspension flows. It should be noted that there has
not yet been any direct experimental confirmation of the results ob-
tained in the present research. Nonetheless, many experimental data
indirectly indicate the existence of effects of this kind: the wall effect
noted by various authors, the nonuniform distribution of erythrocyte
conceniration in blood plasma moving through the vessels, etc. The
authors are also familiar with the experiments of G, V. Vinogradov
with equal-density suspensions of soaps in various organic liquids using
a constant-pressure capillary viscometer. In these experiments, a
region primarily occupied by liquid phase was observed at the center
of the capillary, while the particles were driven toward the capillary
walls.

We note that the model employed should be useful for investi-
gating the motions of nonequal-density suspensions (slurries, etc. ),
which play a very important part in a number of areas of technology
(the oil industry, hydraulic engineering, chemical engineering, etc.).

In conclusion, the authors thank Yu. P. Gupalo
and V. N. Kalashnikov for fruitful discussion of the
problems involved.
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