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The authors examine the s teady-state  one-dimensional  motions of 
suspensions wt~ose particles have a density equal to that  of the corres- 
ponding dispersion medium.  As a whole, the mechanical  behavior of 
such suspensions is described by equations of motion that coincide in 
form with the Navier-Stokes equations for a certain incompressible 
fluid whose viscosity is a known function of the particle concentration 
in the suspensions. To close these equations, the authors postulate a 
principle of min imum energy dissipation for steady-state motion, 
which plays the part of an equation of state for the suspension. This 
new equation permits the determination of the spatial distribution in 
the concentration of solids. Exact solutions are presented for certain 
variational problems associated with the Poiseuille flow of a fluid of 
this kind in circular tubes and Couette flows between concentric cy- 
linders and parallel planes. It is shown that in most cases separation 
of the suspension takes place. 

In [1], equations based on a model in which the phases are treated 
as interpenetrating interacting continua were proposed as a means of 
describing the motion of two-phase disperse systems. However, these 
equations are not sufficient for a complete description of the motion, 
since there is no analog of the equation of state of the disperse system 
as a whole that would make it possible to determine the behavior of 

the system concentration as a function of space and t ime.  
It is easy to show, for exansple, that, even in the case of simpIe 

steady-state motion in a vertical circular tube, these equations have 
an arbitrary number of different solutions corresponding to various 
spatial distributions of the disperse phase (any physically admissible 
dis~ributionhas its ownparticular solution). Generallyspeaking, t o e l i m -  
inate this shortcoming of the theory and close the system of equations 
it is necessary to consider an additional equation of the quasidif- 
fusional type. This equation must describe the variation of particle 
concentration in the system, with allowance for the dependence of 
the diffusion processes on the phase velocity gradients, the stresses 
in the flow, etc. it should evidently be some generalization of the 
Langevin or Fokker-Planck equations. Obviously, its formulation and 
the evaluation of the kinetic coefficients are very serious independent 
problems, whose solution involves almost insuperable difficulties. 
However, if we confine ourselves exclusively to steady-state motion, 
then by analogy with the known results of the thermodynamics of 
irreversible processes, we can introduce the heuristic principle that 
the disperse-phase concentration distribution in the flow is established 
in such a way that the dissipation of flow energy is at a min imum.  
This principle of min imum dissipation corresponds to the principle of 
max imum entropy increase from the thesmodynamies of irreversible 
processes, although the latter has also not been rigorously proved for 
nonequilibrium mechanical  systems. 

It may be assumed that in a two-phase flow there are certain 
small  random motions and associated forces caused, for example ,  by 
the wakes formed behind moving particles, by the interaction of the 
particles as well as by every conceivable fluctuation or perturbation 
of the phase velocities, disperse-phase concentration, and pressure. 
Under the action of such forces, the individual particles move into 
certain "equilibrium" positions corresponding to a given steady-state 
motion (and satisfying the formulated principle). The random force 
field and the process of establishment of the stationary motion may 
evidently be deserit?ed and the principle of min imum energy dissipa- 
tion justified only within the framework of the corresponding statisti- 
cal theory. We note, however, that the existence of fluctuating forces 
and regions of true steady-state motion was experimentally demon- 
strated. (For example ,  in [2] the motion of individual particles in a 
viscous fluid was investigated). Without a detailed examination of 

the statistics of the above-mentioned forces, it is also impossible to 
determine the limits of applicability of the theory developed below. 
However, from general considerations it follows that at very low veloci- 
ties these forces are very small ,  so that the steady-state regime may 
not be achieved in t ime for it to play an important part. On the other 
hand, at high velocities the random forces due to the fluctuations may 
be very intense so that the true distribution of the solid phase in the 
flow will vary considerably from the theoretical distribution correspond- 
ing to minimum energy dissipation. 

For simplicity, we will examine the steady-state motion of sus- 
pensions of solid particles, whose density is equal to the density of the 
viscous medium. In this case, it is possible, with sufficient accuracy, 
to assume that the local values of the phase velocities coincide every- 
where except for thin layers at the confining wails. Passing from the 
equations of [1] to the equivalent equations of two-fluid hydrodynamics 
of a disperse system [3], we demonstrate that the equations of motion 
for the suspension as a whole coincide with the Navier-Stokes equa- 
tions for a viscous fluid with a viscosity which is a known function of 
the particle concentration at the wails [.3]. Near the walls, the local 
values of the particle and fluid-phase valocities may not coincide and, 
moreover, the usual no-slip condition may not be satisfied. However, 
if the radius R of the tube is much greater than the radius a of the parti- 
cles it can be showu that, within a/R,  the boundary condition of no 
slip at the wails is satisfied. We also note that because of the pract ice  
of averaging over volumes whose linear dimensions considerably ex -  
ceed a, all the results obtained below relate to the dimensions l ) a. 

~1.  G e n e r a l  f o r m a t i o n  o f  t h e  p r o b l e m  o f  m o t i o n  o f  

s u s p e n s i o n s .  A s  u s u a l ,  w e  c a n  s u p p l e m e n t  t h e  s y s t e m  

of  N a v i e r - S t o k e s  e q u a t i o n s  w i t h  t h e  c o n t i n u i t y  e q u a -  

t i o n  o f  t h e  f l u i d  a n d  t h e  c o n d i t i o n  of  c o n s e r v a t i o n  o f  t h e  

p a r t i c l e  f l o w .  T h u s ,  w e  o b t a i n  t h e  c l o s e d  s y s t e m  in  

w h i c h  

a x  i axj ~(9)\ axj ~' ox i / j - d g 6 i l ;  

au~ _ 0 ;  a(pu0 _ 0 ;  u ~ ] r = U i ;  
Ox i Oxl 

1 ~ Ouj'~ [ Ou~ a,~j ,~ dV m i n D = m i n - : E  !~(9 ~ /au~  , (1.1)  

Here, d is the density and #(p) is the viscosity of 

the fluid; p is the volume concentration of solids and 

U i is the velocity of the solid surface F. 

The effective viscosity #(p) is, generally speaking, 

a concave function of p. For simplicity, we assume 
that as p ~ p, , where p, is the concentration corres- 

ponding to dense packing of the particles, the quantity 

p(p) tends to infinity; as p ~ 0 we have p ~ #0, where 

~0 is the viscosity of the homogeneous disperse medi- 

um. It is convenient to pass from p to the normalized 

concentration p' using the definition p = p'p,. Hence- 
forth p will be understood to represent the normalized 

concentration p'. We note that it satisfies the natural 

inequalities 

O ~ p ~ t  . (1 .2)  
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In the specific calculations that follow we use an 
approximate relation for p (p) satisfying the limiting 
conditions formulated above: 

~t(p) = 9o(1 -- p)-'* ( n > t ) .  (1.3) 

The va r ia t iona l  p rob lem (1.1)-(1.2) is a ve ry  c o m -  
p l ica ted  va r i an t  of a p rob lem in op t imum-con t ro l  
theory.  Accordingly ,  in a n u m b e r  of cases  it is pos -  
s ib le  to employ methods c h a r a c t e r i s t i c  of that theory,  
i. e . ,  e i ther  use the m a x i m i z a t i o n  p r inc ip le  [4] or r e -  
duce it to the funct ional  equat ions of dynamic  p r o -  
g r a m m i n g  to obtain a n u m e r i c a l  solut ion of the p r o b -  
l em [5]. However,  the m a x i m i z a t i o n  pr inc ip le  is i n -  
effective in solving the p rob lems  cons ide red  in this 
paper ,  so it  is p r e fe rab l e  to make a qual i ta t ive  i n -  
ves t iga t ion  of the co r r e spond ing  funct ionals  in c o m -  
b ina t ion  with the method of e x t r e m a l s .  

.~2. Flow in a c i r c u l a r  tube.  We will cons ider  the 
a x i s s y m m e t r i c  s t eady- s t a t e  flow of a suspens ion  in an 
inf ini te  c i r c u l a r  tube of rad ius  R. Equations (1.1) and 
the in tegra ted  condit ions of conse rva t ion  of the s u s -  
pens ion  (or f ic t i t ious fluid) and pa r t i c l e  flows have the 
fo rm 

( du) Op 1 d r~t(P)-~-r =~-z  - - P ;  
r d r  

R R 
2 ! 2p. U = ~ ru(r)dr; Up = ~ I rp ( r )u ( r )dr .  (2.1) 

Here,  U and Up a re  the mean  flow veloc i t ies  of the 
suspens ion  and the pa r t i c l e s ,  r e spec t ive ly .  The ex-  
p r e s s i o n  for the energy  d iss ipa ted  per  unit  length of 
tube takes the fo rm 

R 

( ~ " V  . 
D = ~ o~ r~t(p) \~-] dr 

0 

We int roduce new d imens ion l e s s  va r i ab l e s  and the 
mean  concen t ra t ion  over  the sec t ion  (p} : 

/ '  2 ' 

0 0 

R 

2 frp(r)dr"  (2.2) y ' = p ( x ) ;  y ( 0 ) = 0 ;  < p ) = ~ - ,  
0 

In tegra t ing  the f i r s t  of Eqs.  (2.1) with al lowance 
for the no - s l i p  condit ion,  subs t i tu t ing  the r e su l t s  into 
the expres s ions  for U, Up, D and (p}, and us ing  ex-  
p r e s s i o n  (1.3) for # ( p ) ,  we obtain 

1 

P2R~ ix ( l__y , )~dx  P~t~ 
o 
1 

PR2 x ( l - - y ' ) ~ d x :  PR2J 
o 

1 
PB~p. ~ PB29. 

U p =  4 ~ 0  , ! y ( t - - y ' ) ~ d x =  ~ G ( y )  
o 

( P ) = I y ' d x = y ( I ) = L ( Y ) '  y ( 0 ) = 0 .  (2.3) 
0 

The velocity distribution over the cross section of 
the tube is described by the expression 

1 

PR2 ~ i u (x) = ~ ~ ( - -  y')'~ dx.  (2.4) 
x 

Thus,  to de t e rmine  p (x) it is n e c e s s a r y  to solve a 
ce r t a in  var ia t iona l  p rob lem with the imposed i s o p e r i -  
m e t r i c  condi t ion and cons t r a in t  (1.2). We will seek the 
solut ion p (x) in the c lass  of p iecewise  continuous func-  
t ions 9(x) = y'(x) ~ C'(O,i) , a s suming ,  to be specif ic ,  
that at the points of discontinuity p -= y' is continuous 
on the left. 

The motion of the suspension depends to a great 

extent on the nature of the given external conditions. 
For different external conditions and hence for dif- 
ferent practical realizations of the motion the specific 
formulations of the variational problem will also be 
different. Below we consider three simple problems 

of the motion of a suspension: 
i) flow defined by specifying the pressure gradient 

P and mean particle concentration (p} ; 

2) flow defined by specifying (p} and the flow rate 
of the suspension U; 

3) flow at specified suspension and particle flow 
rates, U and Up. 

All these problems can be realized, for' example, 
by carrying out a corresponding experiment with a 
long capillary viscometer. Other types of flow, for 
example flow with given P and Up, are also possible. 

For given (p} and P, minimum D(y) corresponds 
to a minimization of the functional J(y). For a flow 
with given (p) and U, from (2.3) we have 

p = 4~0 ul~-~[J(~)1-1, D =: ~0 U~[J(y)] -'. 

Hence it follows that in the la t te r  case rain D(y) 
co r re sponds  to max J(y) if L(y) = <p}. Accordingly ,  
it is convenient  to examine  the f i r s t  two var ia t iona l  
p rob lems  together .  

w Solution of va r i a t iona l  p r o b l e m s  co r r e spond ing  
to a given mean  pa r t i c l e  concen t ra t ion .  We int roduce 
the new var iab le  z = 1 - y '  = 1 - p. It is easy  to see 
that 0 _< z _< 1. The p rob l ems  can then be fo rmula ted  
as follows: to find in the c lass  of funct ions z '  ~ C'(0,  1) 
funct ions that m i n i m i z e  and max imize  the functional  

1 

Yo(Z)=lxz 'dx  ( n > l ) ,  (3.1) 
0 

with the condit ion 

I 

Lo(z)= ~_zdx --(z)  (0<<z><t) ,  
(3 ~2) 

0 

and the restraint 

O ~ z ~ i  �9 (3.3) 

The principal difficulty is that the unknown ex- 
tremals do not, generally speaking, satisfy the Euler 
equation, which involves the possibility of an arbitrary 
number of discontinuities of the extremals on [0, II 
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A l s o ,  t h e  p o s s i b i l i t y  t h a t  t h e  e x t r e m a l s  w i l l  r e a c h  t h e  

b o u n d a r i e s  z = 0 o r  z = 1 of  t h e  p e r m i s s i b l e  r e g i o n  

of  v a r i a t i o n  f o r  z(x) m u s t  b e  a n t i c i p a t e d .  T h e  f u n d a -  

m e n t a l  f a c t  t h a t  f o l l o w s  f r o m  a q u a l i t a t i v e  e x a m i n a -  

t i o n  of  t h e  f u n c t i o n a l s  i s  t h e  m o n o t o n i c i t y  of  t h e  e x -  

t r e m a l s .  T h e  p r o o f  i s  b a s e d  on  a l e m m a .  

L e m m a  3 . 1 .  On  a n y  i n t e r v a l  A of  n o n z e r o  m e a s u r e  

(h ~ ( 0 ,  t)) on  w h i c h  it  i s  c o n t i n u o u s ,  t h e  m i n i m u m  

( m a x i m u m )  z 0 ~  C' (0,1) r e p r e s e n t i n g  t h e  s o l u t i o n  of  

v a r i a t i o n a l  p r o b l e m  ( 3 . 1 ) - ( 3 . 3 )  d o e s  n o t  i n c r e a s e  ( d e -  

c r e a s e ) .  

Proof. We assume the opposite, namely, that on the interval of 
continuity ZX(xt, x~) where (0 ~< x~ < x~ _< 1) the minimum z0(x) does 
not decrease. We construct the function 

z . ( x ) = ~ z ~ 2 4 7  x ~ A  
t~o (~) , ~ ~  

representing the reflection of zo(x ) on the interval A about the straight 
line x - (x I + x~)/2. The function z.  (x) satisfies constraint (3.3) and 

also condition (3.2), since the areas under the z 0 and z. curves are the 
same. By virtue of the convolution property, 

l ] (x) (p (xl ~- x2 - -  x) dx ~ f f (Xl @ X2 - -  x) (p (x) d~c *~ 
xz x~ 

after computations we obtain 

Jo (z.) - -  Jo (~o) = 

o 

The latter conditional inequality follows from the fact that z0(x ) 
is nondeereasing on A, the equality being realized only at z0 (x) ~- 

eonst (x E A). We note that it occurs for arbitrary n > 0 in (1.3). 

The proof for the maximum, which by contradiction is assumed to he 
nonincreasing, is analogous. The contradiction obtained also proves 

the lemma. 

To  p r o v e  t h e  m o n o t o n i e i t y  of  t h e  e x t r e m a l s  on  t h e  

i n t e r v a l  [0, 1] ,  i t  is n e c e s s a r y  to  s h o w  t h a t  t h e  m i n -  

i m u m  ( m a x i m u m )  c a n n o t  i n c r e a s e  ( d e c r e a s e )  a b r u p t l y .  

A d i s c o n t i n u i t y  of  t h e  p i e e e w i s e - m o n o t o n i c  f u n c t i o n  

z(x) ~ C" i s  r e g u l a r  i f  i t  p r e s e r v e s  t h e  m o n o t o n i c i t y  

of  z(x) ; o t h e r w i s e  it  w i l l  b e  c a l l e d  i r r e g u l a r .  We h a v e  

t h e  f o l l o w i n g  t h e o r e m .  

T h e o r e m  3 .1 .  T h e  m i n i m u m  ( m a x i m u m )  f o r  t h e  

p r o b l e m  ( 3 . 1 ) - ( 3 . 3 )  d o e s  n o t  i n c r e a s e  ( d e c r e a s e )  on  

t h e  i n t e r v a l  [0, 1]. 

Proof, We will prove this theorem for the minimum; the proof for 

the maximum is analogous. Assuming the opposite, namely, that the 
minimum z0(x ) has N irregular discontinuities at points 0 < x 0 < . . .  

. . .  < XN_ t and examining z0 on [0, xt], we let z0- = z0(x0 -0),  z0 + = 
= z0(x 0 + 0), where, by assumption z + > z0-. We also denote z0(x) 
on the left of x 0 by ~(x)  and, on the right of z 0 (i. e . ,  on the interval 
(x0,xl)) by ~2~(x) and isolate in the neighborhood of xs a small interval 

A(xa,xB) ~_ [0,x~] such that cx(xa) -< qz(xB). The interval A exists 
in view of the pieeewise continuity and piecewise monotonicity (Lemma 
3.1) of z0(x). On the interval A(x a,  xB) we construct the new function 
z,(x) (represented by the line C'D'A'B') from the function z 0 (repre- 
sented by the line ABCD (Fig. 1)). For this purpose we move the piece 
CD horizontally to the left, parallel to itself until the point C coin- 
cides with C' with abscissa xa; piece AB is similarly shifted to the 
right until the point B coincides with B' with abscissa x~. Conditions 
(3.2) and (3.3) are invariant under these parallel translations. The 

analytical representation of z,(x) has the form 

i zo (x), x E A (x~, x~) 

After a simple calculation, we obtain 

Xo x~ 

xc~ Xo 

In the second integral we introduce the change of variables 

x q -- x o 
x = a ~ , @ b ,  a ~  Xo--Xoc , b = x  o - a x e : .  

which transforms the segment (x 0, x~) into the segment (xa,x0). Then 

x~ xo 

(x~ I e~2n(x) d x = ( x ~  --z'~ f ~P2n(ax@b) dx " 
x~ x~ 

Since, from the construction of the interval A we have % < q)2. 
we may therefore obtain j 

xo 

Jo (z .) - -  Jo (zo) ~ (x~ --  %) f [~l~ (x) --  c~2 n (ax + b)l dx < 0 �9 
xa 

I fx  a = 0 and x B = x 1 ( i . e . ,  z0(0 ) a z0(xl) ), the minimum cannot 
have an irregular discontinuity at the point x 0. 

We will now consider the general case. Without loss of generality 
it is sufficient to consider the situation characterized by the inequal- 
ities 

z o (0) > Zo + > zo- > zo (xl). (3.4) 

In fact, let, for example, z0(0) < z 0' and z0(xl) < z ( .  Then the 
function z* (x), represented by the dashed line C'E'B'ED in Fig. 2a, 
will give a smaller value for the functional J0(z) than z0(x ), represen- 
ted by the dashed line ABCED conditions (3.2) and (3.3) must be in- 
variant under the transition from z 0 to z , ) .  It is easy to see that for 
z , (x) ,  which alone need be considered, inequalities (3.4) do, in fact, 
hold. The argument is quite analogous for the case in which 

zo- < ~o (~), zo (o) > zo* 

Thus, let z0(x), satisfying (34), have the form shown in Fig. 2b. 
We draw the straight line z = z ~ = (z0 + + z0-)/2 parallel to the axis 
of abscissas until it intersects the curves z = ~ol(x) and z = q2(x) at 
points A and D, respectively (Fig. 2b), with abscissas xc~ and x~. The 
function zl(x ) , which coincides with z 0 (x) everywhere outside the in- 
tervalA(x a ,  xg) and on A is represented by the dashed line AC'B'D, 
gives a lesser value of the functional J0(z) than z0(x). We note that 

the constructed function zl(x ) has two irregular discontinuities at the 
points x a and x B on [0,xl], the value of these discontinuities being 
equal to half the original discontinuity. Going through a similar pro- 
cedure with the irregular discontinuities of the function zl(x ), we o b -  
tain a function z~(x) giving a lesser value of the functional with sat- 
isfaction of conditions (3.2)and (3.3). z2(x ) has four irregular discon- 

c t i~  
c 

- -  [L ,  J \ ' . .  fl! 

I I 

x o x 7 x~ 

F i g .  1 

150 



" C ! - C  ~ Z + k  C' C I 

I I 
o mo.  x~ z t o re -% ~o z~ z+z, 

Fig. 2 

tinuities, each of which is equal to one-fourth of the original discon- 
tinuity of the function z0 (x). The abscissas of these discontinuities 
never coincide. It is easy to see, by induction, that the k-th function 
Zk(X ) has 2 k irregular discontinuities of magnitude 2-k(z0 + - z0-). 
Continuing the process indefinitely, we obtain a function Zn(X ) having 
no discontinuities on the interval [0,xi] at which zn(x ) increases and 
giving functional (3.1) a smaller value than z0(x ) would give it. Re- 
peating the proof for the intervaI [O,x2], we find that on this interval 
aho the min imum cannot have irregular discontinuities. Continuing 
the argument by induction, we arrive at the same conclusion for the 
entire interval [0 , t ] .  This proves the theorem. 

W e  n o t e  t h a t  i n  t h e  p r o o f  o n l y  t h e  f a c t  t h a t  n > 0 

w a s  e s s e n t i a l .  T h i s  c o r r e s p o n d s  t o  a n  i n c r e a s e  i n  t h e  

f l u i d i t y  o f  t h e  s u s p e n s i o n  w i t h  i n c r e a s e  in  z .  I n s t e a d  

o f  t h e  f l u i d i t y  z n i n  ( 3 . 1 ) ,  w h i c h  f o l l o w s  f r o m  e x p r e s -  

s i o n  (1.3) f o r  t h e  e f f e c t i v e  v i s c o s i t y ,  a n  a r b i t r a r y  i n -  

c r e a s i n g  f u n c t i o n  r  s u c h  t h a t  ,I,(0) = 0,  m i g h t  h a v e  

f i g u r e d  i n  t h e  p r o o f .  

A p r i o r i ,  t w o  s i t u a t i o n s  a r e  p o s s i b l e :  e i t h e r  t h e  

m i n i m u m  ( m a x i m u m )  i s  c o n f i n e d  t o  t h e  b o u n d a r y  o f  

t h e  r e g i o n  t a k i n g  t h e  v a l u e s  z e r o  o r  u n i t y ,  o r  o n  a 

c e r t a i n  i n t e r v a l  i t  e n t e r s  t h e  o p e n  r e g i o n  0 < z < 1. 

In  t h e  f i r s t  e a s e  i t  c a n  h a v e  o n l y  o n e  d i s c o n t i n u i t y ;  i n  

t h e  s e c o n d  e a s e ,  o n  t h e  i n t e r v a l  w h e r e  0 < z < i i t  

i s  d e s c r i b e d  b y  t h e  E u l e r  e q u a t i o n .  T h e  E u l e r  e q u a -  

t i o n  f o r  f u n c t i o n a l  (3.1)  w i t h  c o n d i t i o n  (3.2)  i s  

= ( zr, ~i/(~-1) * 
nxz  ~-i = L; z \-7-1 ; Xo = T "  (3.5)  

I t  f o l l o w s  f r o m  (3.5) t h a t  a n  e x t r e m a l  o f  t h e  i n d i -  

c a t e d  t y p e  e x i s t s  o n l y  a t  n ~ 1, w h i l e ,  a s  m a y  e a s i l y  

b e  s h o w n ,  f o r  n > I f u n c t i o n  (3.5) g i v e s  f u n c t i o n a l  (3 .1)  a 

l o c a l  m i n i m u m  a n d  f o r  n < 1 a l o c a l  m a x i m u m .  W e  

w i l l  p r o v e  L e m m a  3 . 2 .  

L e m m a  3 . 2 .  If  t h e r e  e x i s t s  a n  i n t e r v a l  A ( x  1, x2) o n  

w h i c h  t h e  e x t r e m a l  s a t i s f i e s  t h e  c o n d i t i o n  0 < z 0 < 1,  

t h e n  o n  t h i s  i n t e r v a l  z0(x) i s  c o n t i n u o u s .  

Proof. It is sufficient to consider only such A on which a single 
discontinuity of the extremal z0(x ) exists. In view of the additivity of 
functionals (3.1) and (3.2), z0(x ) is a solution of the isoperimetric 
problem of the extremum of J0(z0, A): 

x~ xz 

xzo d~,, Zo dx = <z0> (A). 
Xl xl 

Introducing the new variable z 0 = w'  = dw/dx and comidering as 
usual the functional 

xe x_, l[2c(l~/)n--~AO']d,g=I F (x,  w') d : ~ ,  

;ca x 1 

we find the extremal w (x) must satisfy the Euler equation 

(3.6) 
F w, = nx(w')  n - t -  k = A = const ,  

and the Weierstrass-Erdmann conditions at the point of discontinuity 

c ~ k  

rF lc+~ { F - - w ' F  c.0 _ (3.7) 
t. W'jc_ o +w']c_o =-0"  

From (3.6) and (3.7) it follows that 

[F~.]~2~ = ,,c ~[,~' (~ . -  mJ ''-~ - -  [~" (~ - o) j - -J~ = ~ .  

Hence there follows the continuity of w' = z on A. 

F r o m  t h e  p r o v e d  L e m m a  3 .2  i t  f o l l o w s  t h a t  o n  [0 ,1]  

t h e  e x t e r m a l  z0(x) c a n  h a v e  n o t  m o r e  t h a n  t w o  d i s e o n -  

t i n u t i e s  a t  t h e  p o i n t s  x (0  a n d  x (2), t h e  i n e q u a l i t i e s  

z o ( x ( I ) - 0 )  = 1 a n d  z0(x  (2) + 0) = 0,  b e i n g  s a t i s f i e d  f o r  t h e  

m t m m u m  a n d  t h e  i n e q u a l i t i e s  z o ( x ( 1 ) - O )  = 0 ,  z0(x  (e) + 

0) = 1 f o r  t h e  m a x i m u m .  W e  n o w  h a v e  T h e o r e m  3 . 2 .  

T h e o r e m  3 . 2 .  If n i n  (3.1) i s  g r e a t e r  t h a n  u n i t y ,  

t h e  m i n i m u m  z0(x) o f  t h e  v a r i a t i o n a l  p r o b l e m  i s  u n i q u e  

a n d  c o n t i n u o u s  a n d  c a n  b e  r e p r e s e n t e d  b y  t h e  e x p r e s -  

s i o n s  

t 'l . o < ~ < ~ o  
z0 (x) = l(=o ~)v(,,_~/' ~0 < ~ ~ ~, (3.8)  

where x0 is the unique root of the transcendental 

equation 

#Z -- i [ / ( r~ . - -1 )  ~:0 
( z > =  n - - 2  x~ - -  n - - Z '  (3.9)  

w h i l e  t h e  m a x i m u m  z~ i s  u n i q u e  a n d  g i v e n  b y  t h e  

e x p r e s s i o n s  

z 0 ( x ) _  /0, 0 % x g l - - < z >  (3 .10)  
"[l, i - - < z > < x < t  

Proof. As before, we proceed by contradiction. In accordance with 
Lemma 3.2, it is possible, without loss of generality, to assume that 
the minimum is represented by the dashed line ABCDEF in Fig. 3, the 
segments AB and EF lying in e-neighborhoods of the straight lines z = 
= 1 and z = 0, respectively, while the curve CD is given by Eq. (3.6). 
We construct a new function such that conditions (3.2) and (3.3) do not 
change and such that this function coincides with the previous function 
at x < x a and x > x z (dashed line AI3'D'EF in Fig. 3). Using Lemma 
3.2 and Eq. (3.5), it is easy to see that the curve B'D' is unique and 
also belongs to the class of (8.5), the role of x 0 in (8.5) being played 
by the quantity xc~,xc~ < x i. A direct calculation shows that AB'D'EF 
gives functional (3.1) a value smaller than does ABCDEF. Letting e 
tend to zero, we obtain proof of the continuity of the minimum on 
the left-hand side. We then construct the function At3"'F', which co- 
incides with AB'D'EF in the region x < x 0 and does not affect the con- 
ditions (8.2) and (3.8). In the region x > x0 this function also belongs 

8r~ ' 

o 

Fig. 3 
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F 
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to the class of (3.5), since there is always a corresponding value of x 0. 
Direct calculations show that it gives functional (8.1) a smaller value 
than AB'D'EF. Consequently, the minimum z0(x ) is also continuous on 
the right-hand side and can be represented by expressions I3.8). 

The quantity x 0 in (3.8) is found from the isoperimetric condition 
(8.2), which leads to Eq. (3.9); The right-hand side J(x0) of this equa- 
tion increases monotonically on the interval [0,1] from zero to unity, 
since 

/ '  (x0) ~ (Xo -(n-e) ' (n~l)  - -  1) ( n  - -  2) -1 > 0, n > I . 

Hence it follows that if the condition 0 <<z>< 1 is satisfied there 
will always exist a unique root of gq. (3.9), whence follows the 
uniqueness of the minimnm for n > 1. 

When n > 1, the second assertion of the theorem is obvious. In 
fact, if it is assumed that there is a certain interval A(xpx~) on which 
the maximum z ~ satisfies the inequality 0 < z a < 1, on a certain inner 
segment of that interval (where z ~ is continuous, and such a segment 
always exists since z o ~ C' ), the maximum must satisfy the Euler 
equation (3.5). However, for n > 1 the latter only has solutions cor- 
responding to a minimum of functional (3.1). Hence it follows that 
z~ can only take values of zero or unity. Then, by Theorem 3.1 
the maximum can be represented in the form of (3.10). This proves 
the theorem. 

W h e n  0 < n < 1 i t  c a n  be  s h o w n  in  e x a c t l y  t he  s a m e  

w a y  t h a t  t he  un ique  m i n i m u m  can  be  r e p r e s e n t e d  in  

t he  f o r m  

t, O~x~<l- -<z> 
Zo(X)= o, i - < : > < . - . < l  

w h i l e  t he  un ique  m a x i m u m  is  g i v e n  by the  e x p r e s s i o n s  

2 - - n  i t  - - n  
z', (x) = <z> -I - ~ xl,'(~-,~, <z> < ~ ; 

~ (x/xo) 11a-'), 0 g x % xo ~ x t - -  n 
z ( , ( x )=  1 ~ o < ~ < 1 '  , z , >  z _ ;  " 

k 

We now no te  t h a t  a l l  t he  q u a l i t a t i v e  r e s u l t s  (and 
the  q u a n t i t a t i v e  r e s u l t s  r e l a t i n g  to  d i s c o n t i n u o u s  d i s -  

t r i b u t i o n s )  c o r r e s p o n d  to  an  a r b i t r a r y  f l u id i t y  f u n c t i o n  

�9 (z), i n c r e a s i n g  wi th  z(~(0)  = 0) ,  t h a t  can  be  s u b s t i -  
t u t e d  f o r  z n in (3.1). H e r e ,  t he  c a s e  n > 1 c o r r e s p o n d s  

to  c o n c a v e  f u n c t i o n s  ~ (z ) ,  and  the  c a s e  n < 1 to c o n -  

v e x  ~I,(z). It i s  e a s y  to p r o v e  the  p o s s i b i l i t y  of g e n -  

e r a l i z a t i o n s  of t h i s  k ind  by  e x a m i n i n g  the  p r o o f s  of 

t he  t h e o r e m s .  
On the  b a s i s  of t he  r e s u l t s  o b t a i n e d ,  t he  q u a l i t a t i v e  

f o r m  of t he  p a r t i c l e  c o n c e n t r a t i o n  d i s t r i b u t i o n s  in  t he  
s u s p e n s i o n  p(x) m a y  be  r e p r e s e n t e d  by  the  c u r v e s  in  

F i g .  4 ( a a n d b  a r e  the  m i n i m a ;  c a n d d  a r e  t he  m a x -  
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i m a ) ;  the  a r r o w s  i n d i c a t e  the  d i r e c t i o n  of d i s p l a c e m e n t  

of t he  c u r v e s  w i t h  i n c r e a s e  in (p}.  E x p e r i m e n t s  i n -  

d i c a t e  t ha t  t he  ac t u a l  p (p )  a r e  c o n c a v e  f u n c t i o n s ;  

a c c o r d i n g l y ,  in  a c t u a l  c a s e s  we have  q u a l i t a t i v e  d i s -  

t r i b u t i o n s  c o r r e s p o n d i n g  to  n > 1 in F ig .  4. 

We aIso note that, as indicated in w the results cannot be valid 
at distances from the wali on the order of the particle size, since 
lubricating layers that repel the particles develop at the walls. Sim- 
ilarly, the analytically obtained discontinuities of the distributions 
p(x) actually correspond to a sharp change in p(x) at distances on the 
order of a. Hence it follow~ that the actual distributions differ some- 
what from those obtained above (see dashed lines in Fig. 4). With the 
formulas of w from the known functions p(x) it is easy to obtain ex- 
pressions for the integral characteristics of motion of the susperrsion and 
the velocity field for the flow. These formulas have been omitted for 
tack of space. 

w So lu t ion  of t h e  p r o b l e m  c o r r e s p o n d i n g  to  g i v e n  

f low r a t e s  of  t he  p a r t i c l e s  and  t h e  s u s p e n s i o n  a s  a 

w h o l e .  By e l i m i n a t i n g  the  unknown p r e s s u r e  g r a d i e n t  

P f r o m  (2.3), we a r r i v e  a t  the  p r o b l e m  of f i nd ing  the  

Y0 ~ e l '  t h a t  m a x i m i z e s  the  f u n c t i o n a l  

1 

J ( y ) = t x ( l - - y ' ) ' ~ d x ,  y ( 0 ) ~ 0  (4.1) 
0 

with  the  i s o p e r i m e t r i c  c o n d i t i o n  

1 

G ( y ) - - K J ( y ) = I ( y  K x ) ( l - - y ' ) ~ d x = O ,  
0 

~fp 
K = p~-  ~ 1 (4.2) 

and  the  c o n s t r a i n t  

0 < y' (x) ~< t .  (4.3) 

It i s  e a s y  to  s e e  t h a t  t he  m a x i m u m  y0(x), r e p r e -  

s e n t i n g  t h e  s o l u t i o n  of p r o b l e m  (4.1) - ( 4 . 3 ) ,  m o n o t o n -  

i c a l l y  i n c r e a s e s  (does  not  d e c r e a s e )  and  i s  l o c a t e d  in  

a t r i a n g l e  b o u n d e d  b y  the  a x i s  of a b s c i s s a s  (y = 0), 

the  b i s e c t o r  of the  f i r s t  q u a d r a n t  and  the  s t r a i g h t  l i ne  

x = 1. It i s  c l e a r  f r o m  (4.2) t ha t  t he  m a x i m u m  y0(x) 

s i m u l t a n e o u s l y  m a x i m i z e s  t he  f u n c t i o n a l  G(y) if the  

i s o p e r i m e t r i c  c o n d i t i o n  (4.2) is  s a t i s f i e d .  

Le t  t h e r e  e x i s t  a m a x i m u m  Y0. Then ,  t h e r e  a l s o  
e x i s t s  

maxy0 (x) = y0(t) = <p) (0<<p> < l )  (4.4) 

W e  wi l l  c o n s i d e r  t he  f o l l o w i n g  a u x i l i a r y  p r o b l e m s .  

P r o b l e m  1. To f ind  m a x  J(y) in  the  c l a s s  w i t h  c o n -  
d i t i o n  (4.4) ,  c o n s t r a i n t  (4.3),  and  the  c o n d i t i o n  y(0) =0.  

P r o b l e m  2. To f ind  m a x  G(Y) in  t he  c l a s s  y E C 1' 

w i th  the  s a m e  c o n d i t i o n s  and  c o n s t r a i n t .  
P r o b l e m  1 w a s  s o l v e d  in  t he  p r e v i o u s  s e c t i o n ;  in 

t he  n o t a t i o n  of t h i s  s e c t i o n ,  i t s  s o l u t i o n  h a s  t he  f o r m  

x, 0 gx-.K<p> (4.5) 
y l  (x)  = o,! <p><~.%1 

It i s  found  tha t  t he  s o l u t i o n  of p r o b l e m  2 c o i n c i d e s  

w i th  yi(x) f r o m  (4.5).  In e x a c t l y  t h e  s a m e  way  a s  in 
{3, it  i s  p r o v e d  t h a t  f o r  n > 1 (or g e n e r a l l y  f o r  a c o n -  



cave viscosity characteristic) the solution of the Euler 
equation gives the functional G(y) a local minimum 

under the above-mentioned conditions. Hence it im- 

mediately follows that the unknown maximum y2(x) of 

problem 2 has a derivative equal either to zero or to 

unity, i.e., always moves along the boundary of re- 
gion (4.3). It can be represented by the dashed line 

shown in Fig. 5. It is easy to see that of all such 

dashed lines the curve (4.5) (the dashed line OA'F in 

Fig. 5) gives the greatest value of the functional G(y). 
This follows from the fact that only the "plateau" re- 

gions, where y' = 0, contribute to G(y), which is 
simply equal to the sum of the areas under these re- 
gions (Fig .  5). 

F r o m  th is  t h e r e  f o l l o w s  a c o r o l l a r y :  f o r  g i v e n  <p >, 
the  m i n i m u m  d i s s i p a t i o n  p r i n c i p l e ,  when  U is  a l s o  
g iven ,  i s  e q u i v a l e n t  to the  p r i n c i p l e  of m a x i m u m  p a r -  

t i c l e  f low r a t e ,  w h e n  P is  g iven .  To p r o v e  th i s  a s -  
s e r t i o n  i t  i s  s u f f i c i e n t  to c o n s i d e r  (2.3). 

The  v a l u e  of (O) in (4.5) is  found f r o m  cond i t i on  
(4.2): 

(p)  = K(2 - -  K) -~ (4.6) 

We no te  tha t  if  a s u s p e n s i o n  with  g i v e n  U and Up is  
s u p p l i e d  to the  tube in le t ,  K m a y  be  r e g a r d e d  as  the  
m e a n  i n l e t  c o n c e n t r a t i o n .  Then ,  in a c c o r d a n c e  wi th  
(4.6), in the  r e g i o n  of s t e a d y - s t a t e  f low,  the  m e a n  
c o n c e n t r a t i o n  (p)  m a y  d i f f e r  s u b s t a n t i a l l y  f r o m  K, 
th i s  d i f f e r e n c e  b e i n g  e s p e c i a l l y  n o t i c e a b l e  at  s m a l l  K. 

We also note that if isoperimetric condition (4.2), which deter- 
mines the relation between the particle flow and the flow of the sus- 
pension as a whole, and the pressure gradient P are given, the prin- 
ciple of minimum energy dissipation leads to the conclusion that there 
is no flow in the tube. Physically, this can easily be understood by 
considering a special experiment in which a suspension with given 
mean concentration K is admitted to a cylinder bounded by a piston 
under constant pressure. The piston forces the suspension into a ca- 
pillary of much smaller diameter. A certain time after the process 
begins the particles in the capillary enter the densely packed state, 
after which motion ceases, and new suspension entering the cylinder 
only serves to raise the piston. 

w C o u e g e  f low.  We wi l l  c o n s i d e r  Coue t t e  f low 
b e t w e e n  c o n c e n t r i c  c y l i n d e r s  of r a d i i  R,  and R2(R1 < 
< R2). The  s y s t e m  of e q u a t i o n s  c o r r e s p o n d i n g  to (2.1) 

t hen  has  the  f o r m  

d %2 _ dp . dPrv ' 2Pr~ = 0 ; 
r dr ~ --~r ~-  r 

R~ 

p~ -- 9 (p) r ; D = 2n r p ~ . j ~ d r  �9 

R t  

(p) 

t 
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I n t r o d u c i n g  the d i m e n s i o n l e s s  v a r i a b l e  x = (r/II2) 2 

and  u s i n g  Eq .  (1.3) in the  i n t e g r a t i o n  we ob ta in  a 

s y s t e m  of f u n c t i o n a I s  c h a r a c t e r i z i n g  the :motion: 

1 

1 

V Ro~oP dx  B 2 ~ ~  z = -  .... z ~ . . . . .  I - o ;  ~0 ) x~ ,it0 
0 

I 

(5.1) 
H e r e ,  ~-0 is the s t r e s s  at  the  o u t e r  c y l i n d e r ,  D is  

the  d i s s i p a t e d  e n e r g y ,  and V is  the  l i n e a r  v e l o c i t y  at  
the  o u t e r  c y l i n d e r .  The  v e l o c i t y  of the i n n e r  c y l i n d e r  

is  a s s u m e d  to be  equa l  to z e r o ,  which ,  as  m a y  e a s i l y  
be  s een ,  d o e s  not  r e s t r i c t  the g e n e r a l i t y  of the  a n a l -  

y s i s .  Thus ,  fo r  e x a m p l e ,  i f  the  i n n e r  c y l i n d e r  r o t a t e s  
and the  o u t e r  c y l i n d e r  i s  s t a t i o n a r y ,  the  s e c o n d  f u n c -  

t iona l  in (5.1) d o e s  not  change ,  wh i l e  the  f i r s t  and 
t h i r d  a r e  g e n e r a l l y  cons t an t .  As  in w we a r r i v e  at  a 
v a r i a t i o n a l  p r o b l e m .  

In the  c l a s s  z E C '  to f ind the  func t ion  z0(x) tha t  
m i n i m i z e s  ( m a x i m i z e s )  the  func t iona l  

M(z) = iz~lS.~,,, 
k 

(5.2) 

with the condition 

1 

l zdx = <z > (o < (5.3/ 
K 

and the  c o n s t r a i n t  

0 ~ z ~  t .  (5.4) 

We note  tha t  the  p r o b l e m  of ra in  M(z) c o r r e s p o n d s  
to d e t e r m i n a t i o n  of the  c o n c e n t r a t i o n  f i e ld  when  the  
m e a n  c o n c e n t r a t i o n  in the  s u s p e n s i o n  and the s t r e s s  
a t  the  ou t e r  c y l i n d e r  a r e  g iven .  The  p r o b l e m  of m a x  

M(z) c o r r e s p o n d s  to d e t e r m i n a t i o n  of the  c o n c e n t r a -  
t ion  f i e l d  when  the  m e a n  c o n c e n t r a t i o n  of the  s u s -  

p e n s i o n  and the  v e l o c i t y  a t  the  o u t e r  c y l i n d e r  a r e  
g i v e m  

As in ~3, the  b e h a v i o r  of the  e x t r e m a l s  i s  d e t e r -  
m i n e d  f r o m  a q u a l i t a t i v e  i n v e s t i g a t i o n  of the  v a r i a -  
t iona l  p r o b l e m  (5 .2) - (5 .4)  u s i n g  the  E u l e r  equa t ion .  

The  q u a l i t a t i v e  b e h a v i o r  of the e x t r e m a l s  i s  d e f i n e d  
by two a s s e r t i o n s  a n a l o g o u s  to L e m m a  3.1 and T h e o r e m  
3.1.  

L e m m a  5.1.  The  func t ion  Zo ~ C ' ( k ,  t) m i n i m i z i n g  
( m a x i m i z i n g )  func t iona l  (5.2) wi th  c o n d i t i o n  (5.3) and 
constraint (5.4) does not decrease (increase) on any 
interval of continuity A of nonzero measure. 

Theorem 5.1. The function z0~C'(k , I) that min- 
imizes (maximizes) functional (5.2) with condition 
(5.3) and constraint (5.4) does not decrease (increase) 
on the entire interval [k, I]. 

These assertions are proved by the same methods 
as employed in proving Lemma 3.1 and Theorem 3.1. 
The "somewhat inverted nature" of these assertions 
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as  c o m p a r e d  wi th  the  a s s e r t i o n s  of w i s  a t t r i b u t a b l e  

to  t he  d i f f e r e n c e  b e t w e e n  the  o p t i m i z e d  f u n c t i o n a l s  

J (z)  and  M(z).  

Then ,  in  t he  s a m e  w a y  a s  in w it  i s  s h o w n  tha t ,  

on i t s  i n t e r v a l s  of c o n t i n u i t y ,  t he  m i n i m u m  i s  d e -  

s c r i b e d  b y  the  c o r r e s p o n d i n g  E u l e r  e q u a t i o n ,  w h o s e  

s o l u t i o n  can  have  c o r n e r  p o i n t s  only  a t  the  b o u n d a r i e s  

z = 0 and  z = 1 of t he  r e g i o n  of v a r i a t i o n  of z0. The  

m a x i m u m ,  h o w e v e r ,  c a n  on ly  t a k e  the  v a l u e s  z = 0 

o r  z = 1. S i n c e  the  m a x i m u m  is  m o n o t o n i c  ( non i n -  

c r e a s i n g ) ,  i t  h a s  t he  f o r m  

(x )  = < < = + ('  - <")" ( 5 . 5 )  

H e r e ,  t he  c o n s t a n t  c~ is  found  f r o m  the  i s o p e r i -  

m e t r i c  c o n d i t i o n .  

The  f a m i l y  of i n t e r v a l s  of t he  m i n i m a  s a t i s f y i n g  

the  E u l e r  e q u a t i o n  is  r e p r e s e n t e d  by  the  e x p r e s s i o n s  

z~ (x) = Cx'Z(,~-~) (C ~ O) ; 

<~> ( i -  k)(,,+ i) (n~ t ) .  (5.6) 
C = [t -- k (n+l)/(n-1)] (n -- 1) 

F r o m  (5.6) it  i s  e a s y  to  s e e  t h a t  f o r  1 < n < 3 t he  

f u n c t i o n  z0(x) i s  c o n c a v e ,  and f o r  n > 3 it i s  c o n v e x .  

The  p r o b l e m  of t he  m i n i m u m  f a l l i n g  on the  b o u n d a r y  

z = I i s  s o l v e d  by  i n v e s t i g a t i n g  the  b e h a v i o r  of  z(1) = 

= C ( ( z > ,  k, n), w h e r e  

l - - k  , , n+ l - -~> t ; - - I  C(<z>, k , n ~ = < z } ~  i Z  ~ �9 

F o r  f i x e d  <z>, l? we  h a v e  

(It dc ,=~ = 0.(5.7) 
Cl,,=o=<Z>~; (;l~= =<z>; ~<0; 

The b e h a v i o r  of C(< z>, k ,  ~) a s  a f u n c t i o n  of k i s  

p r e s e n t e d  in F ig .  6. If  < z>p > 1, t h e r e  e x i s t s  a k0 

s u e h t h a t  f o r k  < k 0 w e h a v e  C > 1. If {z )  ~-< 1, C < 

< 1 f o r  a l l  p o s s i b l e  k. In t he  f i r s t  e a s e ,  wi th  k < k0 

( s u f f i c i e n t l y  w i d e  gaps)  a t  a c e r t a i n  x = x0 the  m i n i -  

m u m  r e a c h e s  t he  b o u n d a r y  z = 1 and  t h e n  t r a v e l s  

a l o n g  the  b o u n d a r y ,  w h i l e  f o r  k > k0 the  m i n i m u m  

d o e s  not  r e a c h  the  b o u n d a r y .  Thus ,  t he  b e h a v i o r  of 

the  m i n i m a  ( i . e . ,  the  s o l u t i o n s  of t he  p r o b l e m  f o r  

g i v e n  r 0 and  (p>)  and  the  m a x i m a  ( s o l u t i o n s  f o r  g i v e n  

V and  < p > is  a n a l o g o u s  to the  b e h a v i o r  of t he  c u r v e s  

in F ig .  7a, b ,  r e s p e c t i v e l y .  W h e n  the  g a p s  a r e  v e r y  

n a r r o w  (k - -  1), it  f o l l o w s  f r o m  (5.7) t ha t ,  f o r  g i v e n  

C" 

~. --I ...... 

I k 

/( o 

Fig~ 6 

Fig .  7 

T O and  ( p>, the  s u s p e n s i o n  c o n c e n t r a t i o n  d i s t r i b u t i o n  

t e n d s  to b e c o m e  u n i f o r m .  

The f low and  c o n c e n t r a t i o n  d i s t r i b u t i o n  in p l ane  

C o u e t t e  f low a r e  e a s i l y  o b t a i n e d  f r o m  (5.5) and  (5.6) 

by  p a s s i n g  to  t he  l i m i t  a s  R1 - -  oo wi th  R2 - t t l  = h = 

= c o n s t  and  r - Hi = Y = c o n s t .  F o r  t he  m i n i m u m ,  

f r o m  (5.6) we  have  

h(g)  = lim Zo(X) = <z}, t{1 -~ ec, r - -  t/1 = const .(5.8) 

For the maximum, from (5.5), we obtain 

1, 0<y-%<z> R 1 /  . . . .  /71=const.(5.9) z2(y) = l im  zo(x) = 0 ,<z><y~<t '  

tt should be noted that a direct investigation of the maximum in 
plane Couette flow shows that there is a continuum of functions 
{z0 (g)} ~ L (0, t) that maximize the corresponding functional under 
conditions of the type of (5.3) and (5.4). These functions are repre- 
sented by the expressions 

0, y ~ E ,  mcs E = t - -  <z> (5.i0) 
z0(y)= 1, y ~ [ 0 , 1 ] / E = E ' ,  mesE'=<z> 

The proof follows from the fact that the maximum z ~ C' can 
take values of zero or unity (this follows from an investigation of the 
Euler equation for the given problem) and also from the invariance of 
functional (5.2) for k = 0 with respect to translation. 

Then, since zo ~ L is the limit in the mean of the step functions 
z~ ~ C' having values of either zero or unity while there is no ana- 

log of Lemma 5.1 and Theorem 5.1 for plane Couette flow, we ob- 
tain the proof of Eq. (5.10). 

w176 Discussion. The results obtained show that, theologically, a 
suspension cannot be treated as an ordinary fluid. In particular, it 
does not possess such a unique structural constant as viscosity, since, 
as shown above, different viscometric experiments may lead to rather 
different viscosity relations. This observation (noninvariance of the 
rheologicai curves with respect to the type of viscometric experiment) 
has been repeatedly noted in the literature. The separation effect is 
also important in suspension flows. It should be noted that there has 
not yet been any direct experimental confirmation of the results ob- 
tained in the present research. Nonetheless, many experimental data 
indirectly indicate the existence of effects of this kind: the wall effect 
noted by various authors, the nonuniform distribution of erythrocyte 
concen~ation in blood plasma moving through the vessels, etc. The 
authors are also familiar with the experiments of G. V. Vinogradov 
with equal-density suspensions of soaps in various organic liquids using 
a constant-pressure capillary viscometer. In these experiments, a 
region primariIy occupied by liquid phase was observed at the center 
of the capillary, while the particles were driven toward the capillary 
walls. 

We note that the model employed should be useful for investi- 
gating the motions of nonequal-density suspensions (slurries, etc. ), 
which play a very important part in a number of areas of technology 
(the oil industry, hydrauIic engineering, chemical engineering, etc. ). 

In c o n c l u s i o n ,  the  a u t h o r s  t h a n k  Yu. P .  Gupalo  
and  V. N. K a l a s h n i k o v  f o r  f r u i t f u l  d i s c u s s i o n  of the  

p r o b l e m s  i n v o l v e d .  
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